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Hydraulic control of zonal currents on a P-plane 
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Eastward-flowing zonal currents on a thin rotating shell, such as a planetary 
atmosphere or ocean, have integral properties analogous to open channel flows, the 
latitudinal width of the zonal current being the analogue of the depth of an open 
channel flow. The purpose here is to apply the formalism and some of the concepts 
of open channel flow hydraulics to zonal flows and demonstrate the results with 
laboratory experiments. In particular a critical relationship is found between a 
representative zonal velocity, U ,  and the half-width of the current, a. A dimensionless 
parameter (U/Pu2), the Froude/Rossby number, is found analogous to the Froude 
number of open channel flow. Westward-flowing currents do not have an equivalent 
analogue. 

1. Introduction 
Eastward-flowing zonal currents are found on all the major planets explored so far 

(Jupiter, Saturn and Uranus) as well as in the Earth’s atmosphere and oceans. An 
integral treatment will be presented for these zonal flows. These flows exist in a thin 
rotating atmospheric or oceanic shell for which the analysis is simplified here to a 
,!?-plane. The primary integral property of the flows studied is the energy flux, 
representing the transport of pressure work rate and kinetic energy of a current with 
fixed mass transport. It will be seen that the energy flux has a minimum for any 
given mass flux and that, observationally, many zonal flows are observed at this 
minimum. 

The flows considered will have a primary force balance arising from inertia and 
variation of the Coriolis force. These are so-called quasi-geostrophic zonal currents on 
a Rossby p-plane. The effects of friction, although included here, will be considered 
weak with respect to this primary balance. These flows are then found to be 
analogous to flows studied in open channel hydraulics in which the primary force 
balance is between inertia forces and those derived from variation of depth. In what 
follows it will be seen that the role of the depth in open channel flows is assumed by 
the width or latitudinal extent of zonal currents. An advantage of an integral 
approach, such as used here and in the study of open channel flows, is that the final 
steady state of the flow depends only weakly on the details of the velocity 
distribution or frictional dissipation within the current. After integration across the 
current, essential nonlinear aspects of the flow are retained in algebraic form, in 
particular conditions for critical flow. 

Aspects of the analogy between zonal currents and open channel hydraulic flow 
were pointed out by Rossby (1950) and reviewed by Rex (1950) in consideration of 
strongly developed ‘blocking waves’ (cf. Berggren, Bolin & Rossby 1949). In 
particular, Rossby showed that two dynamically possible states may exist which are 
compatible with continuity and momentum requirements as in an open channel 
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hydraulic jump. Similarities in the vorticity equations for large-scale atmospheric 
motions and small-scale gravity oscillations of a stratified fluid were shown by Ball 
(1959). The atmospheric flow a t  500 mb was compared with theoretical solutions of 
Long (1955) for flow of a stratified fluid. The type of flow and number of jets formed 
was seen in the atmosphere to depend on the dimensionless parameter (U/PL2) .  This 
is the Rossby P-number introduced by Pultz (1961), the P-plane analogue of the 
Proude number; it also was found by Rhines (1975) to be important for turbulencc 
on a P-plane. To emphasize the analogy to  open channel flow it will be referred to 
here as the Froude/Rossby number. 

A framework similar to that used for the study of open channel flows (cf. Rouse 
1950, or Henderson 1966) will be developed here for zonal currents. A true analogue 
is found between eastward-flowing zonal currents and open channel flows; no true 
analogue is found for westward-flowing zonal currents. This asymmetry between 
eastward and westward flows is important and due to the fact that these flows are 
on a P-plane. The paper begins in $ 2  with a discussion of the pressure excess which 
arises from latitudinal variation of the Coriolis force, the zonal current analogue of 
the hydrostatic pressure for open channel flows. I n  $3, the energy flux is then found 
with this pressure excess ; properties of the energy flux for zonal currents and open 
channel flows are compared and contrasted. In $4, the cumulative effects of friction 
on zonal currents and the tendency for eastward-flowing zonal currents to reach a 
critical state are discussed. Critical flow and analogous controls for zonal flows 
are reviewed in $5. Theoretical results are then demonstrated with laboratory 
observations in $6. A brief early report of this work can be found in Armi (1974). 

2. The pressure distribution due to a zonal current 
Consider a non-divergent eastward zonal current as illustrated in figure 1 (a) with 

half-width a, and velocity u(y), defined positive to the east. If the flow is geostrophic, 
the pressure can be obtained by integration of 

where p is the density (assumed constant) and .f is the variable Coriolis parameter. 

where the Coriolis parameter has been expanded such that the current is now 
considered on a Rossby 6-plane. The validity of this expansion, particularly in the 
neighbourhood of the equator, has been carefully considered by Veronis (1963), 
Phillips (1966), and Grimshaw (1975). 

We shall be considering a steady flow with a total volume transport V ,  hence a 
stream function can be defined with 

The pressure can then be written 
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FIGURE 1.  (a )  Plan view for zonal flow, and ( b )  side view for the open channel analogue. 
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The pressure distribution due to a constant Coriolis parameterf,, and the pressure 
a t  the southern edge of the current, P - ~ ,  is p($). The pressure excess associated with 
P, the variation of the Coriolis parameter with latitude, is p‘(y,a). Note that p is 
independent of the width of the current whereas p’ is not. Rossby (1950) first used 
the existence of this pressure excess to treat hydraulic-jump-like phenomena or 
blocking waves in the westerlies. 

The pressure excess, p’, arises as a result of the current, with volume transport, V ,  
being constrained to flow in a thin rotating shell approximated here by a P-plane. If 
the transport is as a wide eastward current, the pressure excess on any given 
streamline will be high, whereas for a narrow faster eastward current with the same 
transport, the pressure excess on the same streamline will be low. 

This pressure excess associated with the geostrophic zonal current is directly 
analogous to the hydrostatic pressure due to the depth of an open channel flow. To 
illustrate the analogy, consider the open channel flow shown in figure 1 ( b ) .  When the 
hydrostatic approximation applies, 

where z is the vertical coordinate and g is the gravitational acceleration ; then 

Pb, h) = pg(h--), (8) 

where h is the depth measured from the free surface to the bottom. An open channel 
flow with fixed transport, Q ,  can either flow as a swift shallow flow with low 
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hydrostatic pressure along the bottom or as a slow deep current with high 
hydrostatic pressure along the bottom. 

To further illustrate the analogy, assume that the velocity profile of the zonal 
current is independent of width between -a and + a ;  

V 
2a 

u ( y )  = -. 

The excess pressure is then given by (6) as 

(9) 

and in particular, the excess pressure a t  the axis (y = 0) of the uniform zonal current 
is 

PV p’(0, a )  = P-a. 4 

For the open channel flow the pressure at the bottom from (8) is 

P(0 ,  h)  = P9h. (12) 

The role of the gravitational acceleration, g, for open channel flows, is assumed by the 
term &!3V, for the uniform zonal current. It is already worth noting that the 
magnitude and sign of this term will depend on the magnitude and sign of V ,  and 
hence the direction and transport of the zonal current. 

The half-width, a, of a zonal current is analogous to the depth, h, for open channel 
flows. The excess pressure along any streamline for the geostrophic zonal current is 
a function of the velocity distribution (6) and proportional to the width or latitudinal 
extent of the current. The sign of the pressure excess is dependent on the flow 
direction, unlike the bottom pressure in open channel flows. 

It is a classical problem in open channel flow hydraulics to determine the flow 
depth h at various sections along a channel. Specification of the volume flux alone is 
not adequate to do this; at some location the height must either be specified or 
established as, for example, at a control section. For zonal flows the width or 
pressure excess is also not determined by the volume flux alone. 

3. The energy flux of a zonal current 
The energy flux associated with any zonal current will be defined here as it is for 

open channel flows (cf. Ippen 1950, p. 507, or Henderson 1966, p. 19). By integration 
across the current, from -a to +a (figure l a ) ,  the flux of kinetic energy plus pressure 
work rate per unit mass is given by 

With the pressure distribution (4) and stream function (3) given in the previous 
section, the total energy transport becomes 
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As for open channel flows we shall decompose (14) into the specific energy flux, Go, 
a t  the section or longitude in question and terms due to the pressure a t  -a, f,, and 
the volume transport V.  Then 

(15) 
V 
P 

G = Go +p-,--$ few, 

with 

Performing the outer integration by parts, assuming a symmetric velocity 
distribution, (16) can then be written 

To apply the specific energy flux to arbitrary zonal velocity distributions, velocity 
distribution coefficients are used, as in the study open channel flows (cf. Rouse 1950, 
p. 59 or Henderson 1966, p. 19). Define a velocity distribution function g ( q )  such 
that 

with u, the maximum velocity of the zonal current. Define energy, a,  and pressure, 
a’, coefficients respectively by 

With a Froude/Rossby number defined by 

the specific energy flux per unit mass (17) can be written as 

( P V ) ~  aa’5 
G,(V,RoP) = [ ] fl[(R0,$+2(R0~)-4]. 

For the analogous open channel flow, define the energy or ‘Coriolis coefficient’ (cf. 
Henderson 1966, p. 19) 

a = kl ( ; rdz ,  

where U is defined such that 

Q = [udr  = Uh. 

The total energy flux per unit mass is given by 

u[&’ + g(h + z,)] dz. 

Define the specific energy flux a t  any section, H,, independently of the elevation of 
the bottom, z,,, 

H = H,+&z,; (26) 
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FIGURE 2. Kon-dimensional energy flux, Gl, (solid lines) for eastward-flowing, Ro, > 0, and 
westward-flowing, Ro, < 0, zonal currents. Contributions due to the kinetic energy flux (dashed 
lines) and pressure work rate (long and short dashed lines) are also shown. For Ro, > 0 the results 
shown apply also to the open channel analogue with F2 replacing Ro,. 

then with (24)  

and the Froude number is defined by 
au2 

gh 
F 2 = - - - .  

Note the similar role played by the Froude number, F 2 ,  and the Froude/Rossby 
number, Bop, in the specific energy flux equations (22)  and (27) .  (Analogous equations 
for compressible flows involve the non-dimensional Mach number, M2.)  Just  as the 
Froude number relates inertia forces to  pressure forces arising from depth variations 
of an open channel flow, the Froude/Rossby number relates inertia forces to pressure 
forces arising from width variations of a zonal current. It is not inconsistent to have 
Ro, = O(1) and the ordinary Rossby number of the flow small enough such that (1) 
is applicable. However, a t  the equator, where f,, = 0, the flow must be strictly two- 
dimensional and non-divergent. 

The non-dimensional specific energy flux, G;, given by the term with Ro, of (22)  

G; = (Bop)% + 2(Rop)-4 (29)  

is shown in figure 2 for eastward- and westward-flowing zonal currents. Contributions 
due to the fluxes of kinetic energy and pressure work rate (potential energy) are 
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shown separately. For positive values of Rop, or eastward flow, the curves shown also 
apply equally well to the open channel analogue (27); simply substitute F2 for RoP 
The usual presentation in open channel flow texts is, however, with non-dimensional 
depth rather than the Froude number. 

4. Subcritical and supercritical zonal currents, effects of weak dissipation 
With the volume transport of an eastward zonal flow fixed, figure 2 illustrates that 

for a broad slow subcritical current with Ro, < 1, the pressure work rate, due to a 
large pressure excess associated with the broad flow, will be large. However, the flux 
of kinetic energy will be small. Conversely, for a fast, narrow supercritical current 
with Roa > 1, the pressure work rate is small and the flux of kinetic energy high. The 
Froude/Rossby number was defined (see (21)) such that the specific energy flux due 
to the combined flux of kinetic and potential energy (pressure work rate) is a 
minimum for Ro, = 1. Interestingly, no such minimum exists for westward flows ; the 
specific energy flux simply increases with increasing speed of the westward flow. The 
particular Froude/Rossby number, or alternatively the combination of width and 
velocity, which makes t,he specific energy a minimum for a certain volume flux V ,  
waa defined by analogy to open channel flows to be the critical Froude/Rossby 
number. 

Rewriting (21) for Ro, in terms of the volume transport, 

V=umaS_lgdq, 

gives the relationship between the Froude/Rossby number and the half-width 

= [ ;irx,.] a-3 

and the Froude/Rossby number and the maximum velocity 

For a fixed transport, u, is proportional to the cube root of the Froude/Rossby 
number and the width, a, is inversely proportional to the cube root of RoP 

The downstream effects of dissipation, with volume flux conserved, can be 
immediately seen from figure 2; frictional dissipation can only tend to reduce the 
specific energy flux. For a supercritical eastward-flowing current, Roa > 1,  frictional 
dissipation will reduce Go, implying a reduction also of the velocity and widening of 
the current (31) and (32). For a subcritical eastward-flowing zonal current, Ro, < 1, 
the effects of frictional dissipation are quite opposite to those for a supercritical flow. 
Dissipation will increase Ro, with an associated acceleration and narrowing of the 
current. 

The integral properties of interest here are only weakly dependent on the velocity 
distributions of the zonal flows considered. As examples, a’ in the definition of the 
Froude/Rossby number (20) and (21) and um, the maximum velocity at critical 
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flow (Rap = 1 ,  urn = a'pd) from (32), are given below for the following velocity 
distributions : 

a' = 0.33 urn = 0.44@fl, (33a) uniform U(Y) = urn 

parabolic 

triangular 

a' = 0.25 

a' = 0.23 

urn = 0.52@fl, (336) 

urn = O . S Z @ P ~ .  ( 3 3 ~ )  

5. Critical flow and control 
So far both V ,  the transport, and Go, the specific energy, have been prescribed 

initially and we have discussed how Go would change under the influence of friction. 
This discussion would also apply to the open channel analogue for Q and H,. In  open 
channel flow there is a further underlying problem of great interest : namely, given 
the flow rate Q, what determines the specific energy H ,  and hence the relationship of 
depth to  velocity 2 This is the control problem : controls are features of open channels 
which tend to produce critical flow and hence a relationship between depth and 
velocity. Contractions and overflows are common examples of open channel controls. 

We shall by analogy to  the open channel case illustrate the nature of controls or 
transitions for zonal currents. I n  the neighbourhood of a control the role of friction 
will be assumed to be quite weak. Differentiating the energy equation (15) in the 
direction of flow gives 

dGo VdP-a - -+-- - 0. 
dx p dx 

We have assumed the central latitude of the current remains fixed, dissipation is 
weak, the flow rate, V ,  is fixed and dp-,/dx is gradually varying only in the flow 
direction, x, such that variations in y, the cross stream direction, may be neglected. 

(34) 

Solving (36) we have (37) 

It is noteworthy that the Froude/Rossby number plays a critically important part 
in (37). We could have just as well solved for either the velocity, urn, or half-width, 
a ,  using (31) and (32). Also note that (37) is the solution in differential form of the 
quasi-linear equation, (36) ; the solution is for the non-dimensional dependent 
variable, Ro,, as a function of the independent variable, dp-,/dx. However, solutions 
will exist only if [l-Rob] =k 0, or if in the neighbourhood of locations where 
11 -Rob] = 0 certain regularity conditions are satisfied. For this problem i t  will be 
that dp-Jdx = 0. Locations where [l -Rob] = 0 will be called controls by analogy to 
open channel flow since they establish unique solutions. 

If the flow is subcritical, Ro, < 1, then the denominator of (37), [ l  -Rob] > 0. A 
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FIGURE 3. (a) Plan view of the controlled zonal flow with a source and sink and a constant-flow- 
rate pump. (b) Open channel analogue with a broad-crested weir and a constant-flow-rate pump. 

decrease in pressure along the southern edge of the zonal flow will result in a decrease 
of Ro, to an even lower subcritical value. The flow will slow and broaden, conserving 
volume transport. For the subcritical open channel analogue, deepening of the 
channel bottom along the direction of flow also results in a slower and deeper flow 
with lower Froude number. 

In contrast, if the flow is initially supercritical, Ro, > 1, then the denominator of 
(37), [l -Roll < 0. A decrease in pressure along the southern edge of a supercritical 
zonal flow then results in a further increase in Ro,. The flow will accelerate and 
become narrow, just as the supercritical open channel flow analogue accelerates down 
the side of an overflow. 

Now consider the zonal flow shown in figure 3(a) and its open channel flow 
analogue depicted in figure 3 (b ) .  Figure 3 (a) is the configuration of a source and sink 
later studied in a laboratory P-plane. Figure 3(b) shows the common open channel 
flow from a reservoir over a long broad-crested weir; this problem is discussed in 
many standard texts (cf. Henderson 1966, p. 211). For both problems the volume 
flow rate, V or Q,  is fixed; we shall search for a controlled state. 

Assume, since it is observed, that a steady-state solution exists and that it is 
asymmetric. In  the open channel case this means that the flow is Over the broad- 
crested weir from the left-hand reservoir to the right-hand reservoir. Only one asym- 
metric solution exists for flow over the broad-crested weir. The Froude number 
of this flow is unity at the brink of the weir where dz,/dx changes from zero to less 
than zero. No other solution can be asymmetric about dz,/dx = 0, as inspection 
of the analogue to (36) easily shows. Upstream of the end of the weir, the assumed 
weak effects of friction will require that the Froude number decrease slightly from 
unity ; in the language of hydraulic engineering this effect on the free surface level is 
known as a backwater curve. 



366 L. Armi 

For the zonal flow of figure 3(a) ,  in the immediate neighbourhood of the sink 
dp/dx < 0 and hence dp-,/dx < 0,  owing to the suction of the constant-flow-rate 
pump. Upstream of the sink dp-,/dx = 0. We shall analyse this problem including 
the effects of weak dissipation, D. Equation (34) then becomes 

and its solution (37) becomes 

From (39) we see that when dp-,/dx = 0 the effects of frictional dissipation are as 
discussed in the previous section. For initially subcritical flows, dissipation raises 
Ro, whereas for initially supercritical flows, dissipation decreases Ro,. The minimum 
for Go occurs for Rob = 1, critical flow. 

Over most of the flow dp-,/dx = 0 and D > 0; hence over most of the flow, 
[(dp-,/dx)+D] > 0. However, in the immediate neighbourhood of the sink 
dp-,/dx < 0 and with weak dissipation [(dp-,/dx) + D ]  < 0. Our concern will now 
be with the location where [(dp-,/dx)+D] = 0. From (38) it follows that a t  this 
location, either [Ro, =+ 1 and dRo,/dx = 01 or [Ro, = 1 and dRo,/dx > 01. 

The first possibility represents either an  entirely supercritical flow or an entirely 
subcritical flow in the neighbourhood of [dp-,/dx)+D] = 0. The flow is then 
symmetrical about this location since [ 1 -Rap] is everywhere either greater or less 
than zero. An initially subcritical flow will increase in speed for [(dp-,/dx) +D] > 0 
and decrease in speed as [(dp-,/dx) +D] < 0. An initially supercritical flow behaves 
in, exactly the opposite but symmetrical way about [(dp-,/dx)+D] = 0. For 
[(dp-,/dx)+D] > 0 the supercritical flow will decrease in speed and increase again 
as [(dp-,/dx)+D] < 0. 

Only the second possibility, namely Ro!, = 1 and dRo,/dx > 0, where [(dp-Jdx) 
+D] = 0 is associated with an asymmetric flow. The flow is so-called 'controlled' 
because at the control location, [dp-,/dx) +D] = 0, a relationship between velocity 
and width is established through Ro, = 1. For the open channel analogue of figure 
3(b), the analogous relation between velocity and depth is established by F2 = 1. 

6. Experiments 
Some aspects of the open channel analogue for zonal currents can be demonstrated 

with laboratory experiments. The experiments were performed on the 210 em 
diameter rotating table a t  the Woods Hole Oceanographic Institution. A brief 
description and photographs of the facility are presented by Faller (1960) and a more 
detailed description is given by Ibbetson & Phillips (1967). The experimental 
arrangement is best seen in figure 4. A source and sink were used to create the zonal 
currents. The sink was a small pump of up to  300 ml s-l capacity which discharged 
through a diffused source. A barrier a t  0" longitude extended from the outer wall to 
the centre of the tank and separated the source and sink. The basin formed is thus 
of 360" longitudinal extent. I n  addition t o  radial longitude lines at 30" intervals, the 
distance to  the centre of the tank is marked at 10 cm intervals. The source and sink 
were placed 85 cm from the centre of the tank. 

All flows were visualized using the thymal blue technique of Baker (1966). Dye was 
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formed along radial wires a t  a height 4 cm above the bottom. Each radial wire had 
3.5 cm long vertical wires soldered a t  their centres to the radial wire every 5 cm along 
the radius. The combination of radial and vertical wires was chosen in order to  
visualize both azimuthal and radial displacements. No significant radial motions 
were observed from the dye releases of the vertical wires, confirming the strictly 
zonal behaviour of the flows. Quantitative measurements of velocity were made from 
the Lagrangian displacement of dye formed a t  the radial wires. 

With rapid rotation, much of the centre of the tank was actually dry; for 
example in figures 4, 5, 7, 10 and 11 the parabolic free surface intersects the bottom 
a t  a radius of 50 cm. The radial wires were suspended 4 cm off the table bottom; 
hence dye is only visible a t  radii for which the water depth is deeper than 4 cm. For 
example in figures 4, 5, 7, 10 and 11 the dye is visible only a t  radii larger than 70 
cm. The water depth a t  the radius of the source and sink was maintained a t  10 cm. 

After discussion of the laboratory P-plane ($6.1) controlled flows are discussed in 
$6.2. Supercritical flows, both eastward and westward, are discussed in $6.3. All of 
the above flows were steady. In  order to study the application of Rossby wave 
dynamics, impulsively started flows are discussed in $6.4. These flows also reach a 
steady state after passage of the Rossby waves. 

6. 1. The laboratory B-plane 
Another way of looking at this problem is in terms of the total vorticity equation 
integrated over the depth : 

d W 

D 
z(f+f) = u.vg+vp+"f= 0, 

where f;, the relative vorticity, is assumed < f, the planetary vorticity, U, is the 
velocity field, D is the depth, and (w,/D)f is the vortex stretching due to Ekman 
pumping on the bottom. Horizontal friction has been neglected relative to bottom 
friction. 

For laboratory flows the role of P, the variation of planetary vorticity, can be 
replaced by variations of the depth, D ,  with radial distance from the centre of the 
tank, r,  

dD 
P=-f,,,. 

I n  these experiments depth variations are given by a parabolic free surface with 

where o is the rotation rate ; then 

The laboratory equivalent of north was towards the shallow centre; the large 
diameter outer rim was the deep south. 

Scaling the vorticity equation with the half-width, a, the characteristic steady 
velocity, u,, and the zonal scale, L,  gives the non-dimensional steady vorticity 
equation : 

[$]u.og+v+[F]5 E ~ L  = 0. 
(44) 
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The Ekman pumping term is now given by 
.- 

with the Ekman number, E ,  defined by (cf. Veronis 1973) 

2 V  E E - .  
P2 

When [um/bu2] 4 1,  the flow is very subcritical and frictionally controlled. The 
dynamics of (44) is linear and solvable in terms of the strength of source and sink 
distributions. This problem has been treated by Faller (1960) ; the appropriate 
equation is simply 

For the very supercritical case, [u,/bap] b I ,  the effects of variation of planetary 
vorticity are weak. This problem was treated by Gadgil (1971) with the predictive 
equation 

The zonal currents treated here are those for which the vorticity equation is 
nonlinear, i.e. [u,/@u2] - 1 ;  the vorticity equation is then of higher order and 
additional information is needed to obtain a solution. The critical condition Ro, = 1 
at a control provides a relation between u, and a to complete the solution.' 

For the laboratory experiments the magnitude of frictional effects due to Ekman 
pumping on the bottom is given in (44) by the term 

E ~ L  
EL = [74. (49) 

The effects of friction over lengthscales comparable with the half-width are then 
given by 

E ,  EV =[*I. 
wVa 

For most of the experiments E ,  - 0.04 and eL - 4 based on the tank circumference 
at the radius of the current. Frictional effects were important over the total 
circumferential length separating the source and sink on the rotating table, yet 
frictional effects were small at  lengthscales of order the half-width of the zonal 
currents studied. 

The Rossby number 

wa 

of the currents studied was small, typically Ro - 0.06. Although the table was not 
covered, the vertical barrier at 0" longitude spun up the air immediately above the 
table. Drift velocities induced by the remaining wind stress at  the free surface were 
only of order 0.02 cm s-'. 

6.2. Controlled flows 
Two examples of flows with control near the sink are shown in figures 4 and 5.  These 
are photographs of the configuration sketched in figure 3(u).  The sink is on the left 
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FIGURE 4. Top view of eastward zonal flow established by a source and sink to the east and west 
respectively of a vertical barrier at 0" longitude. For this flow T = 3.4 s (counterclockwise), 
p =  0.1 1 cm-' s-', V = 7 em2 s-l, T = 40 s, urn = 0.8 em s-l, Rap. = 0.9, ea = 0.04. The free surface 
intersects the bottom at a radius of 50 cm and the depth is less than 5 em at radii less than 70 cm. 

side of the barrier a t  0" longitude and since the table is rotating clockwise, as viewed 
from above, the flow is eastward. For the flow rates measured, 7 em2 s-' and 
16 respectively, critical half-widths (equation ( 3 3 b ) )  are 6 em and 8 em 
respectively for figures 4 and 5 .  Since these widths are less than the available half- 
width on the rotating table (about 15 em for this rotation rate), controlled flows are 
established in the neighbourhood of the sink. The two photos would be identical if 
we were dealing with a purely linear phenomenon since the product of the flow rate 
per unit depth, V ,  and the time since the dye release began, T ,  is approximately equal 
for both photos. For the lower flow rate (V = 7 em2 s-l), of figure 4, the zonal currents 
are narrower than the higher flow rate case (V  = 16 em2 s-l) shown in figure 5.  

Experimental results for a number of eastward flows controlled by a sink are 
summarized in figure 6. Two different rotation periods and hence two different values 
of p were studied. The velocities were measured from photographs using the dye 
released at 60" longitude upstream of the sink since the dye released 30" upstream 
became distorted close to the sink, as can be seen in figure 4. Hence, because of 
frictional dissipation all the measurements were made in the slightly subcritical 



370 L.  Armi 

FIGURE 5. Top view of eastward zonal flow as in figure 4, but for this flow 7 = 3.4 s 
(counterclockwise), /3 = 0.11 cm-ls-', V = 16 cmz s-', T = 20 s,  urn = 1 . 1  cm s-l, RoB = 0.7, 
E ,  = 0.03. 

3 

0 I 2 3 4 5 6 
pi VB 

FIGURE 6. Maximum zonal velocity u, vs. fi$ for eastward flows. 0 ,  w = 1.57 s-', p = Oi074 cm-l 
s- ' ;  A, w = 1.85 s-', /3 = 0.11 cm-ls-'. The line is the theoretical value urn = 0.52/3fi for a 
critical parabolic velocity distribution (33b). 
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region upstream of the control. The volume flow, V ,  was computed from the 
displacement of the dye line emanating a t  60' longitude upstream of the sink. The 
solid line shown in figure 6 has a slope of 0.52, the value appropriate for a critical 
parabolic velocity distribution (33b) .  All the measurements are bounded by the 
critical value. 

Although for these experiments, frictional effects were small a t  lengthscales of 
order the half-width of the current, they were not negligible over the total 
circumferential length separating the source and sink on the table. The transport 
computed for figure 6 includes the pumped flow plus a weak recirculating flow. This 
recirculating flow is clearly visible in figures 4 and 5 at radii less than 85 cm and 
80 cm respectively. At  these radii the water depth is shallow : 7.6 cm at a radius of 
80 cm decreasing to zero a t  a radius of 50 cm. The recirculation is due to Ekman 
pumping on the bottom (equation (49)) and varies with circumferential distance 
around the table. This recirculating flow was difficult to estimate, but contributed 
less than 25 YO to the total transport reported in figure 6. Since the recirculating flow 
is not directly controlled a t  the sink, the theoretical result shown in figure 6 will 
overestimate the observed maximum velocities of the controlled flow alone. 

One primary effect of dissipation, anticipated in 53, was that these subcritical 
flows should speed up in the direction of the flow. This effect is clear in both figures 
4 and 5. The dye displacement increases by a factor of two in the direction of the flow, 
counterclockwise to the east, around the table. Less obvious is an anticipated 
narrowing of the current. This is masked to some extent by the increasing transport 
in the flow direction due to Ekman pumping on the bottom. 

6.3. Supercritical flows 
For all westward flows the specific energy flux, GA, has no minimum, as can be seen 

by inspection of figure 2. For these westward flows no critical state exists ; the Ro, of 
the flow is set a t  the source and they broaden and slow down in the direction of flow. 
This effect is just opposite to that for eastward subcritical flows, which narrow and 
speed up in the direction of flow. As will also be demonstrated in the next subsection, 
long Rossby waves, which propagate information about changes to these flows, can 
only travel in the direction of these flows and not upstream from a hydraulic control. 
All westward flows are therefore supercritical. 

Examples of these westward flows are shown in figures 7 and 8. Rather than 
interchange the source and sink, the table was simply rotated clockwise instead of 
counterclockwise. Hence west is now in the counterclockwise direction. If you prefer, 
you are now viewing a more familiar clockwise rotation from down under ; look at the 
photos (figures 7 and 8) in a mirror if this is confusing. For the westward flow shown 
in figure 7 the table is rotating rapidly, as in figures 4 and 5 ,  and hence P is large. Note 
that in the direction of flow (counterclockwise/west) the flow speed is decreasing in 
contrast to the eastward flows shown in figures 4 and 5.  

For the flows shown in figures 8 and 9, the rotational period of the table was long 
(7 = 7.0 s) and hence p = 0.02 cm-l s-l is small. For figure 8 the table was rotating 
clockwise, for figure 9 counterclockwise. For figure 8 the dye wires were left on for 
only a short time to produce a single dye line. Both of these flows are supercritical, 
that shown in figure 8 because it is westward. Although the flow shown in figure 9 is 
eastward, for this value of p and flow rate, even the broadest flow possible, in this 
cam half the table radius, is supercritical. Note that for this flow e = 0.2, a relatively 
high value associated with significant entrainment of new fluid into the eastward flow 
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FIGURE 7 .  Top view of westward zonal flow. The table is now rotating clockwise. r = 3.4 s 
(clockwise), /l= 0.11 crn-ls-l, V = -30 em2 s-l, T = 40 s ,  u, = 0.8 om s-l, Ro, = -0.6, E ,  = 0.03. 

FIGURE 8. Top view of westward zonal flow as in figure 7 ,  but for this flow T = 7.0 s (clockwise), 
/3 = 0.02 cm-ls-', V = - 7  cm2 s-', T = 240 s ,  u, = -0.2 cm s-l, Ro, = -0.2, E ,  = 0.09. 

and a compensating westward return flow. The effect of frictional dissipation on the 
supercritical eastward flow is to broaden the current in the direction of flow. 

6.4. Impulsively started $ow8 and Rossby wave propagation 
The application of Rossby wave dynamics can be demonstrated by impulsively 
starting these flows. Initially the fluid on the rotating table was spun up and 
motionless with respect to the table. After starting the pump, two types of waves 
propagate around the table : Kelvin gravity waves and Rossby waves. The gravity 
waves are fast and produce a uniform flow at all longitudes ; the Rossby waves are 
slow and produce the velocity distributions seen in the zonal currents. 

Figures 10 and 11 show the results of these impulsively started experiments. In  
both, dye lines were first formed and then the pump was started a t  T = 0. The 
sequences of photographs were taken a t  15 s intervals after the start of the pump. I n  
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FIGURE 9. Top view of supercritical eastward zonal flow. The table is now rotating counter- 
clockwise, otherwise the configuration and flow rate are identical to the westward flowing 
current in figure 8. T = 7.0 s (counterclockwise), /9 = 0.02 cm-' s-l, V = - 7 cm2 s-l, T = 60 s ,  
u, = -0.4 cm s-l, Ro, = 2, e, = 0.2. 

figures 10(a) and l l (a) ,  the uniform flow left behind by the fast moving gravity 
waves can be seen everywhere except in the immediate neighbourhood of the sink in 
figure 10 ( a )  and the source in figure 11 (a) .  Here these sequences differ since figure 10 
is for an impulsively started eastward zonal flow while figure 11 is for an impulsively 
started westward flow. 

Since long Rossby waves can only propagate to the west, for the impulsively 
started eastward flow in figure 10, they propagate upstream from the controlling 
sink. At 15 s (figure 10a) a zonal flow with a parabolic velocity distribution can only 
be seen at 30" of longitude west of the sink. At 30 s (figure lob) the parabolic 
distribution has reached 60' of longitude west (clockwise) from the sink; a t  45 s the 
Rossby waves have propagated to approximately 90" west of the controlling sink. 
The Rossby waves propagate westward and upstream against the flow from the sink 
with speed 0($u2). This case is analogous to what would happen if the open 
channel flow shown in figure 3 ( b )  were impulsively started. A gravity wave then 
propagates upstream with information about the hydraulic control with a speed 
(gh);. 

The sequence shown in figure 11 is for a westward impulsively started current. The 
configuration is identical to that shown in figure 10, only the table is now rotating 
clockwise and west is in the counterclockwise direction. The Rossby waves again 
propagate to the west (now counterclockwise) in the same direction as the westward 
flow. Inspection of figure 2 shows that for all westward flows, no minimum exists for 
the specific energy flux. In fact, since long Rossby waves can only propagate to the 
west, all eastward flows are in a sense supercritical with respect to long Rossby 
waves. No long Rossby waves can ever propagate upstream against a westward 
current, whereas for subcritical (Roa < 1) eastward flows the Rossby waves do 
propagate upstream. In  figure 11 (a) ,  after 15 s the Rossby waves have been carried 
with the current approximately 30" westward (counterclockwise) from the source. In  
figure 11 (b ) ,  after 30 s, the waves have left a parabolic zonal current as far west as 
approximately 120". 
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FIGURE 10. Top views of an impulsively started eastward zonal flow. The pump was started at  
T = 0 and the photos are for (a )  T = 15 s, ( b )  30 s, ( e )  45 s .  7 = 3.4 s (counterclockwise), p = 0.11 
em-' s-l, V = 30 em2 s-'. Note the westward (clockwise) Rossby wave propagation from the 
controlling sink. The free surface intersects the bottom at a radius of 50 cm and the depth is less 
than 50 cm at radii less than 70 cm. 
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FIGURE 11. Top views of an  impulsively started westward zonal flow. The table is now rotating 
clockwise, otherwise everything is identical to  the configuration for the impulsively started 
eastward zonal flow of figure 10. The pump was started at T = 30 s, and the photos are for (a) 
T = 15 s ,  (a) 30 s ,  (c) 45 s. 7 = 3.4 s (clockwise), /3 = 0.11 cm-’ SKI, V = 30 oma 5-l. Note the 
westward (counterclockwise) Rossby wave propagation from the source. 
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7. Conclusions 
The concept of hydraulic control, developed for open channel flows, applies to 

zonal flows on a P-plane. In  particular, a t  a control, a critical relationship exists 
between a representative zonal velocity and the width of the current. This critical 
relationship can be expressed through a dimensionless parameter, the Froude/ 
Rossby number (21) defined in an  analogous way to the Froude number of open 
channel flow. For the hydraulic control of zonal flows the flow direction is crucial 
since long Rossby waves, by which the information concerning the control 
propagates, only travel to the west. Therefore all westward flows are controlled 
upstrcam and are in a sense supercritical. For eastward flows both subcritical and 
supercritical flows are possible in complete analogy to open channel flow. 

Throughout the paper the analogy has been drawn with open channel flows for 
both simplicity and convenience. However, in the light of the similarities in the 
vorticity equations for flows on a /?-plane and stratified flows shown by Ball (1959), 
a more direct comparison for the laboratory experiments might have been with 
selective withdrawal from a stratified reservoir (cf. Yih 1980, pp. 106-122) for which 
a critical Froude number criterion also applies. 

The flows considered were barotropic and a critical relationship was found to apply 
between velocity or flow rate, V ,  and the half-width, a ,  for these zonal flows. In a 
stratified and rotating environment the combination of a critical criterion 

F = V/d2N 
for the depth of the flow d, given the Vaisala frequency N (cf. Yih 1980, p. 116), with 
the criterion found here, Ro, = 1, would apply. 

In the treatment presented here the flow rate, Ti, was specified and the specific 
energy flux per unit mass, Go, was found, (22). The problem can always be turned 
around ; given Go and solving for the flow rate through the critical flow relationship 
Ro, = 1 ,  (21). 

Some possible extensions of the concept of hydraulic control of zonal flows 
introduced here are the following : throughout the discussion, the centre latitude 
( f o ) ,  of the current was assumed fixed. However, non-zonal flows, for example those 
moving north or south along a coast, could be treated with (15). Now the term 
+fop is an additional topographic forcing term like p-a V / p  and would be included in 
(34). Since the integral properties of interest were only weakly dependent on the 
velocity distributions of the zonal flows, a few were chosen, (33a, b ,  c ) ,  for illustration. 
However, J. Willebrand (personal communication) suggested and showed that the 
specific energy flux, Go, can be minimized for all possible velocity distributions. 
Although the flows were treated here using the simplification of the /?-plane i t  will be 
essential to  extend the concept of hydraulic control to  spherical geometry for flows 
extending over large latitudinal extent, for example the differential rotation of the 
Sun. 

This work was begun a t  the Geophysical Fluid Dynamics Summer Study Program 
at the Woods Hole Oceanographic Institution in 1974. The program was sponsored 
by the National Science Foundation. Thanks to Melvin Stern for telling me about the 
obscure paper of Rossby (1950) and subsequent stimulating discussions. I received 
many helpful comments, particularly from Jurgen Willebrand, Larry Pratt, Michael 
McIntyre, Tony Maxworthy and Jack Whitehead. My research is supported by the 
Office of Naval Research and the National Science Foundation. 
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